DPP - 8 (Kinematics)

Video Solution on Website:-

Video Solution on YouTube:-

https://youtu.be/hmH8jwEsj98

https://physicsaholics.com/home/courseDetails/52

Written Solution on Website:-

Q 1. A boat moves relative to water with a velocity which is n times the river flow velocity
(a) If $\mathrm{n}<1$, boat cannot cross the river
(b) If $\mathrm{n}=1$, boat cannot cross the river without drifting
(c) If $\mathrm{n}>1$, boat can cross the river along shortest path
(d) Boat can cross the river whatever is the value of n (excluding zero value)

Q 2. A river is flowing east to west with velocity v . A man can swim with velocity v_{0} in still water. He takes minimum time t_{1} to cross the river. When he swims along shortest path, takes time t_{2}. The ratio of time $t_{1} t_{2}$ is $1: 2$, then $\frac{v_{o}}{v}$ is equal to
(a) $\sqrt{3}: 2$
(b) $1: 1$
(c) $2: \sqrt{3}$
(d) $2: 1$

Q 3. A boat which has a speed of $5 \mathrm{~km} / \mathrm{h}$ in still water crosses a river of width 1 km along the shortest possible path in 15 min . The velocity of the river water in km / h is:
(a) 1
(b) 3
(c) 4
(d) $\sqrt{41}$

Q 4. River is flowing with a velocity $v_{R}=4 \hat{\imath} \mathrm{~m} / \mathrm{s}$. A boat is moving with a velocity of $\vec{v}_{B R}=(-\hat{\imath}+4 \vec{\jmath}) \mathrm{m} / \mathrm{s}$ relative to river. The width of the river is 100 m along y direction. Choose the correct alternative(s)
(a) The boatman will crossthe river in 25 s
(b) Absolute velocity of boatman is $2 \sqrt{5} \mathrm{~m} / \mathrm{s}$
(c) Driftof the boatman along the river current is 50 m
(d) The boatman can never cross the river.

Q 5. A man wants to cross a river 500 m wide. The rowing speed of the man relative to water is $3 \mathrm{~km} / \mathrm{hr}$ and the river flows at the speed of $2 \mathrm{~km} / \mathrm{hr}$. If the man's walking speed on the shore is $5 \mathrm{~km} / \mathrm{hr}$, then in which direction should he start rowing in order to reach the directly opposite point on the other bank in the shortest time?
(a) At an angle $\sin ^{-1}\left(\frac{3}{7}\right)$ with the river flow direction
(b) At an angle $90^{\circ}+\sin ^{-1}\left(\frac{3}{7}\right)$ with the river flow direction
(c) At an angle $90^{\circ}-\sin ^{-1}\left(\frac{3}{7}\right)$ with the river flow direction
(d) At an angle $90^{\circ}-\cos ^{-1}\left(\frac{3}{7}\right)$ with the river flow direction

Q 6. A swimmer crosses a river of width d flowing at velocity v . While swimming, he keeps himself always at an angle of 120° with the river flow and on reaching the other end he finds a drift of $\mathrm{d} / 2$ in the direction of flow of river. The speed of the swimmer with respect to the river is
(a) $(2-\sqrt{3}) \mathrm{v}$
(b) $2(2-\sqrt{3}) \mathrm{v}$
(c) $4(2-\sqrt{3}) \mathrm{v}$
(d) $(2+\sqrt{3})$ v

Q 7. A motor boat is to reach at a point 30° upstream on the other side of a river flowing with velocity $5 \mathrm{~m} / \mathrm{s}$. Velocity of motor boat with respect to water is $5 \sqrt{3} \mathrm{~m} / \mathrm{sec}$. The driver should steer the boat an angle:
(a) 30° w.r.t. the line of destination from starting point
(b) 60^{0} w.r.t.. normal to the bank
(c) 120^{0} w.r.t. stream direction
(d) None of these

Q 8. A man can swim at a speed of $5 \mathrm{~km} / \mathrm{h}$ w.r.t. water. He wants to cross a 1.5 km wide river flowing at $3 \mathrm{~km} / \mathrm{h}$. He keeps himself always at an angle of 60° with the flow direction while swimming. The time taken by him to cross the river will be
(a) 0.25 hr .
(b) 0.35 hr .
(c) 0.45 hr .
(d) 0.55 hr .

Q 9. A swimmer wishes to cross a 1 km wide river flowing at $5 \mathrm{~km}^{-1}$. His speed in still waters is $3 \mathrm{~km} / \mathrm{h}$. He has to reach directly opposite in minimum possible time. If he does not reach directly opposite by swimming, he has to walk that distance at 5 kmh^{-1}. Find the time taken
(a) 0.45 hr
(b) 0.66 hr
(c) 1 hr
(d) 1.5 hr

Q 10. Aswimmer swims (with respect to water) perpendicular to the current with acceleration $\mathrm{a}=2 \mathrm{t}$ (where t is time) starting from rest form the origin O at $\mathrm{t}=0$. Velocity of the river with respect to ground is given by ' V_{0} '. Width of the river is ' d '. The equation of trajectory of the path followed by the swimmer

(a) $y=\frac{x^{3}}{3 V_{0}^{3}}$
(b) $y=\frac{x^{2}}{2 V_{0}^{2}}$
(c) $y=\frac{x}{V_{0}}$
(d) $y=\sqrt{\frac{x}{V_{0}}}$

Q 11. Two swimmers start a race. One who reaches the point C first on the other bank wins the race. A makes his strokes in a direction of 37^{0} to the river flow with velocity $5 \mathrm{~km} / \mathrm{hr}$ relative to water. B makes his strokes in a direction 127° to the river flow with same
relative velocity. River is flowing with speed of $2 \mathrm{~km} / \mathrm{hr}$ and is 100 m wide. speeds of A and B on the ground are $8 \mathrm{~km} / \mathrm{hr}$ and $6 \mathrm{~km} / \mathrm{hr}$ respectively.

(a) A will win the race
(b) B will win the race
(c) the time taken by A to reach the point C is 165 seconds
(d) the time taken by B to reach the point C is 150 seconds

Q 12. A man wishes to swim across a river 0.5 km wide. If he can swim at the rate of $2 \mathrm{~km} / \mathrm{h}$ in still water and the river flows at the rate of $1 \mathrm{~km} / \mathrm{h}$. The angle (with respect to the flow of the river) along which he should swim so at to reach a point exactly opposite his starting point, should be-
(a) 60°
(b) 120°
(c) 145°
(d) 90°

Q 13. A boat moves relative to water with a speed which is $\frac{1}{n}$ times the river flow speed. At what angle to the stream direction be boat move to minimize drifting (given $\mathrm{n}>1$) -
(a) $\frac{\pi}{2}$
(b) $\sin -\frac{1}{n}$
(c) $\frac{\pi}{2}+\sin ^{-1} \frac{1}{n}$
(d) $\frac{\pi}{2}+\sin ^{-1}(n)$

Q 14. Flow velocity of river of width d is given as $\mathrm{u}=u_{0} r$, where u_{o} is constant and r is perpendicular distance from nearer bank. A swimmer heads perpendicular to direction of flow of river. Find his driftif his velocity in still water is v ?
(a) $\frac{u_{0} d^{2}}{4 v}$
(b) $\frac{u_{0} d}{2}$
(c) $\frac{u_{o}^{2} d^{3}}{3 v^{2}}$
(d) $\frac{u_{o}^{2} d^{2}}{2 v}$

Answer Key

Q. 1	b,c,d	Q. 2	c	Q. 3	b	Q. 4	a	Q. 5	b
Q. 6	c	Q. 7	b	Q. 8	b	Q. 9	b	Q.10	a
Q. 11	b,c,d	Q.12	b	Q.13	c	Q. 14	a		

Written Solution

DPP-8 Relative motion (River-Boat problems) By Physicsaholics Team

Solution. 1

$$
\begin{aligned}
& \vec{V}_{B}=3 \hat{\imath}+4 \hat{\jmath} \\
& \vec{V}_{R}=-3 \hat{\imath}-4 \hat{\jmath} \\
& \vec{V}_{B R R}=\left(\overrightarrow{V_{B}}=V_{R}\right. \\
& =(3 \hat{i}+4 \hat{y})-(-3 \hat{\jmath}-4 \hat{\jmath}) \\
& \overrightarrow{V_{B R R}}=6 \hat{\imath}+8 \hat{\jmath}
\end{aligned}
$$

Solution. 2

Solution. 3

$$
v_{s}=\sqrt{3^{2}+2^{2}}
$$

$$
v_{s}=\pi / 3 \mathrm{~m} / \mathrm{s}
$$

drift of swimmer $=v_{x} \cdot t=3 \times 50$ Drift $=1$ TO m .

Ans.c

Solution. 4

Ans.b

Solution. 5

Ans.b
for min tive.

$$
\frac{(3)}{(1)} \Rightarrow \frac{V_{m} \sin \theta}{V_{m 1}}=\frac{d / 12 . i \times 60}{d / 10 \times 60}
$$

$\xrightarrow{\operatorname{cose}-1} \quad A_{1} \stackrel{V_{d}}{ }=120 \mathrm{~m}$.

for in shortost disterce. case-2

fron cose -1 :

and.

fron cose - 2
for shortest Path

$$
\begin{align*}
& V_{R} \Rightarrow V_{m} \cos \theta-(2) \\
& t=\frac{d}{V_{m} \sin \theta} \Rightarrow V_{m} \sin \theta=\frac{d}{12.5 \times 60}
\end{align*}
$$

$$
\begin{gathered}
N_{m}=0.8 \\
v_{m}=1 / 3 \text { or } 0.33 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

in eq^{n} (2) $V_{m}=\frac{d}{2600}$

$$
d=v_{m} \times 600
$$

$$
d=\frac{1}{3} \times 600
$$

$$
d=200 \mathrm{~m}
$$

Solution. 7

Sor shartest path; $\delta=17 \cos \theta$

$$
t_{1}-t_{2}=\frac{d}{15}+\frac{d}{17}=6 s e,
$$

$$
\frac{17 d-18 d}{15 \times 17}=6
$$

$$
\cos \theta=\frac{8}{17} \Rightarrow \sin \theta=\frac{1 \pi}{17}
$$

$$
V=17 \sin \theta=17 \times \frac{15}{17}=15 \mathrm{m4}
$$

$$
t_{1}=\frac{d}{15} \operatorname{seg}-(1)
$$

$2 d=6 \times 1 T \times 14$

$$
r=15 \mathrm{mcs}
$$

$$
\begin{aligned}
& d=3 \times 15 \times 18 \\
& d=765 \mathrm{~m}
\end{aligned}
$$

For min. timey

$$
\begin{aligned}
& 11 \mathrm{~m} / \mathrm{l}=\sqrt{\pi^{2}+82} \\
& t_{2}=\frac{d}{17} \mathrm{sec}-(2 \mathrm{sec} / \mathrm{s})
\end{aligned}
$$

Solution. 8

$$
\begin{aligned}
& \xrightarrow[\theta]{5 \mathrm{kWch}} \underbrace{5 \sin \theta} V_{R}=\text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
D \sqrt{\sin \theta=\frac{4}{5}} \Rightarrow \cos \theta=\frac{3}{5} \\
V_{R}=5 \cos \theta
\end{array} \\
& \Rightarrow-5 x \frac{3}{5} \\
& v_{R}=3 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Solution. 10

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-
https://physicsaholics.com/home/courseDetails/52

https://youtu.be/rFQzCJ3Kcsk

https://physicsaholics.com/note/notesDetalis/74

Chalo Nikis

